US009405524B1

a2z United States Patent (10) Patent No.: US 9,405,524 B1
Davis 45) Date of Patent: Aug. 2, 2016
(54) SOFTWARE VERIFICATION SYSTEM AND 2004/0015961 Al* 1/2004 Chefalas GOGF 8/60
METHODS T8
2005/0229171 Al* 10/2005 Henry GOGF 21/572
. 717/168
(71) Applicant: ALLSCRIPTS SOFTWARE, LLC, 2005/0273779 Al* 12/2005 Chengcccooorvnveee. GOGF 8/62
Chicago, IL. (US) 717/168
2006/0031830 Al* 2/2006 ChU ooooooovrecrecrecr, GOGF 21/10
] . . 717/174
(72) Inventor: gﬁgﬁfgog;agis(%‘g)r es Davis, 2006/0282834 AL* 122006 Chengoovvoeorccene. GOGF 8/62
4 717/174
2008/0222732 Al* 9/2008 Caldwell GOGF 21/125
(73) Assignee: ALLSCRIPTS SOFTWARE, LLC, 726/26
Chicago, IL (US) 2012/0144386 Al* 6/2012 WoOKEY ..ocoocrevrrirn, GOGF /68
717/174
(*) Notice: Subject to any disclaimer, the term of this 2012/0297063 Al* 11/2012 Capomassi G06Q 38/90/2241‘
%atselg ilSSZ)((lt)e):I}bde((i) g; adjusted under 35 2013/0067463 AL* 3/2013 IO wooocrorcricrorrercoen, GOGF 8/60
S.C y 0 days. 717/178
2013/0091498 Al* 4/2013 ATCESE w.oorocrocrecr.., GOGF 9/455
21) Appl. No.: 14/266,793 717/173
(1) App ’ 2013/0254127 Al* 92013 Lee coocoovrovrovrcin., G06Q 30/018
o 705/317
(22) Filed: Apr. 30,2014 2014/0040873 Al* 2/2014 Goldman GOGF 8/65
717/168
(51) Int.ClL
GOG6F 9/44 (2006.01) OTHER PUBLICATIONS
GO6F 9/445 (2006.01) LANDesk Management Suite 9.0, LANDesk Software Ltd., Creating
ngf 115244 888288 Customer Definitions v1.0, 2007, retrieved online on Mar. 29, 2016,
Hi : pp. 1-13. Retrieved from the Internet <URL: https://wikis.uit.tufts.
(52) US.CL edu/confluence/download/attachments/508066 13/How%2520t0o%

CPC .. GOG6F 8/61 (2013.01); GOGF 8/65 (2013.01);
GOGF 8/60 (2013.01); GO6F 11/1433
(2013.01); HO4L 41/082 (2013.01); Y10S
707/99954 (2013.01)
(58) Field of Classification Search

CPC ..o GOGF 8/65; GO6F 8/61; GOG6F 8/60;
GOG6F 11/1433; GO6F 11/3604; GO6F
17/30377, HO4L 41/082

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,735,768 B1* 5/2004 Tanaka GO6F 21/121
717/168

6,978,454 B2* 12/2005 Singleton GO6F 8/61
717175

7,478,385 B2* 1/2009 Sierer GO6F 8/61
717/168

2003/0046679 Al* 3/2003 Singleton GO6F 8/61
717175

2003/0051235 Al* 3/2003 Simpson GO6F 8/60
717/174

2520Create%?2520Custom%2520Definitions%2520in%252090.
pdf%3Fapi%3Dv2+&cd=10&hl=en&ct=clnk&gl=us>.*

Stefano Ceri et al., Automatic Generation of Production Rules for
Integrity Maintenance, 1994, retrieved online on Mar. 29, 2016, pp.
1-59. Retrieved from the Internet: <URK: http://delivery.acm.org/10.
1145/190000/185828/p367-ceri.pdf?>.*

* cited by examiner

Primary Examiner — Thuy Dao

Assistant Examiner — Hanh T Bui

(74) Attorney, Agent, or Firm — Tillman Wright, PLLC;
Chad D. Tillman; Jeremy C. Doerre

(57) ABSTRACT

A method for detecting a confirmation of a properly installed
software product on a computing device, determining the
software product installation properties of the properly
installed software product, and storing information relating to
atleast one or more software product installation properties of
the properly installed software product.

12 Claims, 3 Drawing Sheets

| Initiaization of verification tool dstected | STEF 400

| Software product installation properties identified | STEP 401

Software progiuct Installation propsries compared
to product defintion STEP 402

Yes ol
STEP 403 ‘ e

Propery Installed software
product corfirmed

‘ STEP 404
‘Sofwars product ot propery
italled

END
L= |

U.S. Patent

FIG. 1

Aug. 2, 2016 Sheet 1 of 3 US 9,405,524 B1
\
100
Display
device [
50
80 r
\ _-90
Network Input Display /55
device interface interface
70
—~10 /
Processor(s)
20 Power
source
4&
Storage M\ 60
T o
ports
Memory \—30
J

U.S. Patent Aug. 2, 2016 Sheet 2 of 3 US 9,405,524 B1

BEGIN

Software product installed on computing device STEP 300

Confirmation of propzrgt/eigtsézlled software product STEP 301
Verification tool executed STEP 302
Product definition generated and stored STEP 303

END

FIG. 2

U.S. Patent Aug. 2, 2016 Sheet 3 of 3 US 9,405,524 B1

BEGIN

Initialization of verification tool detected STEP 400

Software product installation properties identified | STEP 401

Software product installation properties compared | gTEp 402
to product defintion

Yes /D{';I’,‘]’% No
STEP 403 Meaualen>” STEP 404

Properly installed software Software product not properly
product confirmed installed

END

FIG.3

US 9,405,524 B1

1
SOFTWARE VERIFICATION SYSTEM AND
METHODS

COPYRIGHT STATEMENT

All of the material in this patent document is subject to
copyright protection under the copyright laws of the United
States and other countries. The copyright owner has no objec-
tion to the facsimile reproduction by anyone of the patent
document or the patent disclosure, as it appears in official
governmental records but, otherwise, all other copyright
rights whatsoever are reserved.

BACKGROUND OF THE INVENTION

The present invention relates to computer systems. More
specifically, the present invention relates to computer soft-
ware installations in a computer system.

There are many web sites that instruct individuals on how
to determine the version of their software product that is
installed on a computer. Many times, though, the instructions
require running a database script that returns a single piece of
information stored in the database, or the script checks the file
version of one EXE or DLL. There are also scripts and prod-
ucts that allow the user to see the list of installed applications
and the respective version of each product on the computing
device. None of these scripts or products, though, provides a
thorough verification of the specific version of the software
installed.

The current scripts and products available to verify soft-
ware do not allow a user to build a thorough definition of a
product.

Accordingly, there exists a need for an improved method
and system for verifying installed software. This and other
needs are addressed by one or more aspects of the present
invention.

SUMMARY OF THE INVENTION

The present invention includes many aspects and features.
Moreover, while many aspects and features relate to, and are
described in, the context of healthcare applications, the
present invention is not limited to use only in this context, as
will become apparent from the following summaries and
detailed descriptions of aspects, features, and one or more
embodiments of the present invention.

Accordingly, one aspect of the present invention relates to
a method for detecting a confirmation of a properly installed
software product on a computing device, determining the
software product installation properties of the properly
installed software product, and storing information relating to
atleast one or more software product installation properties of
the properly installed software product.

In a feature of this aspect, the product definition includes
the stored information.

In another feature of this aspect, at least one or more
installation properties include at least one or more of a file, a
database object, a table, a procedure and registry entries.

In another feature of this aspect, the file information
includes at least one or more of a name of the file, a directory
where the file is located, a date and time last modified, a size,
version number, and a flag.

In another feature of this aspect, the database object infor-
mation includes metadata about the object.

In another feature of this aspect, the table information
includes at least one or more of a list of columns in the table,
data types and a maximum length.

10

15

20

25

30

35

40

45

50

55

60

65

2

In another feature of this aspect, the procedure information
includes at least one or more of indexes, functions, triggers,
constraints and foreign keys.

In another feature of this aspect, the registry entries infor-
mation includes at least one or more of a name, location and
flag.

Another aspect of the present invention relates to a method
for verifying an installed software product stored on a com-
puter device including the steps of determining the software
product installation properties of the installed software prod-
uct, comparing the installation properties to a stored product
definition, and indicating to a user a confirmation that the
installed software product is properly installed when the
installation properties are equivalent to the product definition.

In a feature of this aspect, the stored product definition
includes one or more installation properties of a previously
confirmed properly installed software product.

In another feature of this aspect, the stored product defini-
tion is generated by a computer program comprising instruc-
tions for detecting a confirmation of the previously properly
installed software product on a computing device, determin-
ing the software product installation properties of the previ-
ously properly installed software product, and storing infor-
mation relating to at least one or more properly installed
software product installation properties of the properly
installed software product.

In addition to the aforementioned aspects and features of
the present invention, it should be noted that the present
invention further encompasses the various possible combina-
tions and subcombinations of such aspects and features.
Thus, for example, any aspect may be combined with an
aforementioned feature in accordance with the present inven-
tion without requiring any other aspect or feature.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more preferred embodiments of the present inven-
tion now will be described in detail with reference to the
accompanying drawings, wherein the same elements are
referred to with the same reference numerals, and wherein,

FIG. 1 is an example illustration of a computing device in
accordance with a disclosed implementation of the present
invention;

FIG. 2 is an example flow diagram of an implementation of
the generation of a product definition in accordance with the
present invention; and

FIG. 3 is an example flow diagram of an implementation of
the verification of an installed software product on a comput-
ing device in accordance with the present invention.

DETAILED DESCRIPTION

Referring now to the drawings, one or more preferred
embodiments of the present invention are next described. The
following description of one or more preferred embodiments
is merely exemplary in nature and is in no way intended to
limit the invention, its implementations, or uses.

As a preliminary matter, it will readily be understood by
one having ordinary skill in the relevant art (“Ordinary Arti-
san”) that the present invention has broad utility and applica-
tion. As should be understood, any embodiment may incor-
porate only one or a plurality of the above-disclosed aspects
of the invention and may further incorporate only one or a
plurality of the above-disclosed features. Furthermore, any
embodiment discussed and identified as being “preferred” is
considered to be part of a best mode contemplated for carry-
ing out the present invention. Other embodiments also may be

US 9,405,524 B1

3

discussed for additional illustrative purposes in providing a
full and enabling disclosure of the present invention. As
should be understood, any embodiment may incorporate only
one or a plurality of the above-disclosed aspects of the inven-
tion and may further incorporate only one or a plurality of the
above-disclosed features. Moreover, many embodiments,
such as adaptations, variations, modifications, and equivalent
arrangements, will be implicitly disclosed by the embodi-
ments described herein and fall within the scope of the present
invention.

Accordingly, while the present invention is described
herein in detail in relation to one or more embodiments, it is
to be understood that this disclosure is illustrative and exem-
plary of the present invention, and is made merely for the
purposes of providing a full and enabling disclosure of the
present invention. The detailed disclosure herein of one or
more embodiments is not intended, nor is to be construed, to
limit the scope of patent protection afforded the present
invention, which scope is to be defined by the claims and the
equivalents thereof. It is not intended that the scope of patent
protection afforded the present invention be defined by read-
ing into any claim a limitation found herein that does not
explicitly appear in the claim itself.

Thus, for example, any sequence(s) and/or temporal order
of steps of various processes or methods that are described
herein are illustrative and not restrictive. Accordingly, it
should be understood that, although steps of various pro-
cesses or methods may be shown and described as being in a
sequence or temporal order, the steps of any such processes or
methods are not limited to being carried out in any particular
sequence or order, absent an indication otherwise. Indeed, the
steps in such processes or methods generally may be carried
out in various different sequences and orders while still fall-
ing within the scope of the present invention. Accordingly, it
is intended that the scope of patent protection afforded the
present invention is to be defined by the appended claims
rather than the description set forth herein.

Additionally, it is important to note that each term used
herein refers to that which the Ordinary Artisan would under-
stand such term to mean based on the contextual use of such
term herein. To the extent that the meaning of a term used
herein—as understood by the Ordinary Artisan based on the
contextual use of such term—differs in any way from any
particular dictionary definition of such term, it is intended that
the meaning of the term as understood by the Ordinary Arti-
san should prevail.

An example of a suitable computing device operable in
accordance with an implementation of the disclosed system
and method set forth below is illustrated in FIG. 1. It should be
noted that the various functional blocks shown in FIG. 1 may
include hardware elements, software elements (including
computer code or instructions stored on a non-transitory
machine-readable medium) or a combination of both hard-
ware and software elements. The computing device 100, may
be implemented in different forms. For example, the comput-
ing device 100 may be implemented as a server, group of
servers, a desktop computer, laptop, workstation, personal
digital assistant (PDA) and other appropriate computers. The
computing device 100 includes a bus 10, display interface 55,
display device 50, 1/O ports 40, Input interface 90, data pro-
cessing circuitry, such as one or more processors 20, a
memory device 30, a non-volatile storage 60, a networking
device 80 and a power source 70.

The computing device may be implemented as a mobile
computing device. The mobile computing device may be
implemented by various mobile devices, such as PDAs, cel-
Iular phones, smart phones, tablets and other similar comput-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing devices. The mobile computing device includes a bus, a
display, I/O ports, Input displays, one or more processors, a
memory device, a non-volatile storage, a networking device,
a power source, similar to the computing device 100 illus-
trated in FIG. 1. The mobile computing device further
includes a transceiver for implementing wireless communi-
cation under various protocols, such as SMS or MMS mes-
saging, CDMA, TDMA, WCDMA or GPRS, among others.
The components of the computing devices as shown, their
connections and relationships and their functions are meant
for exemplary purposes only, and are not meant to limit
implementations of the disclosed inventions described and/or
claimed in this disclosure.

The display device 50 may be used to display images
generated by the computing device 100, for example a graphi-
cal user interface (GUI). The display 50 may be any type of
display such as a cathode ray tube (CRT), a liquid crystal
display (LCD), a light emitting diode (LED) display, or other
suitable display. In certain implementations of the computing
device 100, the display 50 may include a touch-sensitive
element, such as a touch screen.

The processor(s) 20 may provide data processing capabil-
ity to execute and support one or more operating systems,
computer programs, user and application interfaces, software
systems and applications, and any other functions of the com-
puting device 100 that may be stored in a memory on the
processor 20, the memory device 30 or on the storage device
60. The processor(s) 20 may include one or more micropro-
cessors, such as one or more “general-purpose’ microproces-
sors, one or more special-purpose microprocessors and/or
ASICS, for example.

The processor(s) 20 may communicate with a user through
input interface 90 and display interface 55 coupled to the
display 50. The display interface 55 may comprise appropri-
ate circuitry for driving the display 50 to present graphical
and other information to a user. The input interface 90 may
receive commands from a user and convert them for submis-
sion to the processor 20.

The instructions or data to be processed by the processor(s)
20 may be stored in a memory 30. The memory 30 may be
provided as a volatile memory, such as random access
memory (RAM), and/or as a non-volatile memory, such as
read-only memory (ROM). The memory 30 may store a vari-
ety of information and may be used for various purposes. For
example, the memory 30 may store firmware executed by a
processor 20 (such as a method for generating and storing a
product definition and a method for verifying a proper soft-
ware product installation on a computing device as discussed
herein), other programs that enable various functions of the
computing device 100, user interface functions, and proces-
sor functions. The memory 30 may also be another form of
computer-readable medium.

The components may further include a non-volatile storage
60 for persistent storage of data and/or instructions. The non-
volatile storage 60 may include flash memory, a hard drive, or
any other optical, magnetic, and/or solid-state storage media.
The non-volatile storage 60 may be used to store data files,
software, wireless connection information (e.g., information
that may enable the computing device 100 to establish a
wireless connection, and any other suitable data. In addition,
the non-volatile storage 60 may also store code and/or data for
implementing various functions of the computing device 100,
such as application or program code, data associated with
such applications or programs, operating system code, user
configured preferences, as well as code for implementing a
method for generating and storing a product definition and a
method for verifying a proper software product installation on

US 9,405,524 B1

5

a computing device as discussed herein. In implementation,
the storage device 60 may be or contain a computer-readable
medium.

A computer program product can be tangibly embodied in
an information carrier. The computer program products may
also contain instructions that, when executed, perform one or
more methods, such as those described below. The informa-
tion carrier is a computer- or machine-readable medium, such
as the memory 30, the storage device 60, memory on proces-
sor 20, or a propagated signal.

A machine-readable medium includes any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., acomputer). For example, a machine-readable
medium includes read only memory (“ROM™); random
access memory (“RAM”); magnetic disk storage media; opti-
cal storage media; flash memory devices; electrical, optical,
acoustical or other form of propagated signals (e.g., carrier
waves, infrared signals, digital signals, etc.); etc.

The disclosed system and methods are preferably imple-
mented by software, hardware, or a combination of hardware
and software. The disclosed implementations can include
implementation in one or more computer programs that are
executable and/or interpretable on a programmable proces-
sor, which may be special or general purpose, coupled to
receive data and instructions from, and to transmit data and
instructions to, a storage system, at least one input device, and
at least one output device.

These computer programs (also known as programs, soft-
ware, software applications or code) include machine instruc-
tions for a programmable processor, and can be implemented
in an appropriate programming language. As used herein, the
terms “machine-readable medium” “computer-readable
medium” refers to any computer program product, apparatus
and/or device (e.g., magnetic discs, optical disks, memory)
used to provide machine instruction and/or data to a program-
mable processor. The computer readable medium can also be
distributed over network-coupled computer systems so that
the computer readable code is stored and executed in a dis-
tributed fashion.

Implementations of the disclosed system and methods aim
to remove the frustration and large amount of time spent
troubleshooting a software issue that stems from an incom-
plete or improper installation of a product. The disclosed
system and method provides the ability to thoroughly verity
that all components of a given software product are installed
on a given computing device. A complete and thorough defi-
nition of a properly installed software product is generated
and stored on a computer readable medium, and used on other
computing devices to verity that a software product installed
on the other computing device is correct, confirming that no
incorrect files, databases objects or registry entries exist that
may cause the software product to operate improperly.

Referring to FIG. 1, when a software program is being
installed on the computing device 100 from a computer read-
able medium, e.g., a disc or CD, the processor 20 executes the
installation procedure stored on the medium. As those having
skill in art know, the installation of a software program may
include one or more of: the processor 20 making sure that
necessary system requirements are met; checking the com-
puting device 100 for existing versions of the software pro-
gram, creating or updating program files and folders, adding
configuration data such as configuration files, Windows reg-
istry entries or environment variables, making the software
accessible to the user, for instance by creating links, shortcuts
or bookmarks, configuring components that run automati-
cally, such as daemons or Windows services, performing
product activation, and updating the software versions.

10

15

20

25

30

35

40

45

50

55

60

65

6

Once the processor 20 has completed execution of the
installation of the software program on the computing device
100, a user confirms that the software program was properly
installed and is operating in the intended manner. The user
decides whether or not to create the product definition form
the installed software program immediately after installation
or after the software program has been started and/or config-
ured. Since some software programs create files, registry
entries or database objects when first started, or when config-
ured, the user decides what is considered a properly installed
software program.

When a properly installed software program has been
determined, the processor 20 executes a verification tool that
interrogates the computing device and stores a detailed prod-
uct definition of information relating to the software prod-
uct’s installation properties. The installation properties may
include at least one or more of a file(s), database objects,
tables and views, procedures and registry entries.

The verification tool is, preferably, stored on a computer
readable medium. The verification tool may be a part of a
memory in the processor, included in the computing device, a
memory, storage, or an external medium that is coupled to the
computing device via the I/O port. The product definition of
the software program, as built by the verification tool,
includes information about the files, registry entries and data-
base objects associated with the product.

When building the product definition, the information
relating to files that have version numbers (EXE, DLL, OCX,
etc.) includes at least one or more of the name of the file, the
directory where the file is located, the date and time last
modified (e.g., using UTC format), the size, version number,
an MDS hash of the file contents and a flag to indicate if the
file is optional or not. For files without version numbers, the
information includes the name, directory and the flag to indi-
cate if the file is optional or not.

In another implementation, the verification tool may allow
the user to input more, or take away, information that is
included in the product definition about the file, whether a
versioned file or not.

For database objects, the information included in the prod-
uct definition, built by the verification tool, includes metadata
about each object. For tables and views, the product definition
includes a list of columns in the table/view and for each
column, a hash of the list of column names (in order of
definition), data types, maximum length, if it can be NULL or
not and if there is a default value.

For stored procedures, the product definition includes one
or more of indexes, functions, triggers, constraints and for-
eign keys, a hash of the CREATE statement for that object as
well as which database/table it’s associated with, if appli-
cable.

For registry entries, the product definition includes one or
more of the name, location and a flag indicating if the entry is
optional or not. Preferably, the product definition does not
include the content of the entry, since registry items are for
configuration purposes and therefore the content will vary
from site to site and/or from computing device to computing
device.

As acompany creates newer versions of a product or if they
receive a new version of a product from another vendor, the
tool will need to be run again to generate a definition of the
new version. It does not matter if this is an update to a given
version, like a Service Pack, or a new, full version that might
get released on a CD or DVD. This tool only works with
cumulative updates to a product so if the update not cumula-
tive, this tool will not be useful for defining that update. Full

US 9,405,524 B1

7

versions of a product are almost always cumulative so this
tool will work in those situations.

The verification tool may be used internally by a company
to create definitions of a software product’s installation. It
does not matter whether the company created the product or
purchased it from another company. The creation of the prod-
uct definition process will happen on machines where a
known good installation of the product exists. This proper
installation is meant to be a pristine environment where the
software product is known to be installed correctly and com-
pletely.

An example flow diagram of an implementation of the
method for generating a product definition is illustrated in
FIG. 2. A software product is installed on a computing device.
STEP 300. A confirmation of a properly installed software
product is detected by a processor included in the computing
device from the user. STEP 301. The processor executes a
verification tool to generate a product definition. STEP 302.
The product definition is generated and saved by the proces-
sor to a computer readable medium. STEP 303.

The verification tool may also be used when a certain
computing device needs to be interrogated to ensure that a
given version of a product is installed correctly or not. This
computing device, for example, can be at a customer site or on
an internal machine used for internal needs, such as perfor-
mance testing, or general Quality Assurance testing, e.g.,
before any users are allowed on the system to begin configu-
ration or usage of the product.

FIG. 3 is an example flow diagram of an implementation of
the method for veritying that a computing device has a prop-
erly installed software product. A processor included in the
computing device detects the initialization of the verification
tool, including the product definition, stored on a computer
readable medium. STEP 400. Product install information is
detected for the software product by the processor. STEP 401.
The verification tool compares the product install information
to the product definition of the verification tool, STEP 402,
and determines if the product install information is equivalent
to the product definition. If the product definition is equiva-
lent, the verification tool confirms a properly installed soft-
ware product to the processor. STEP 403. Otherwise, the
verification tool indicates to the processor that the software
product installed on the computing device is not properly
installed. STEP 404.

The disclosed system and method is useful to software
companies that create one or more products and regularly
release newer versions of the product. On in-house machines,
product definitions of known good installations of a given
product may be created. Accordingly, when customers have
an issue with a product on site, the disclosed verification tool
may be executed to verify that the installation is still correct
before beginning normal troubleshooting procedures.

The disclosed implementation is also useful to companies
that purchase products that are highly configurable. If the
purchasing company has many different standard configura-
tions, this tool can be used to compare a given machine
against one of the standard configurations. Whether the pur-
chasing company re-distributes the purchased product to its
customers or uses it extensively in-house, the tool can be used
to verify a test or production environment before the normal
troubleshooting procedures are used to determine the root
cause of a problem.

When using the tool to check an installation, installation
using the classic Windows MSI Installer is not required. All
that is needed is the files for the verification tool along with
the product definitions to be placed on the customer box with
a simple file copy.

20

25

30

40

45

8

Based on the foregoing description, it will be readily under-
stood by those persons skilled in the art that the present
invention is susceptible of broad utility and application. Many
embodiments and adaptations of the present invention other
than those specifically described herein, as well as many
variations, modifications, and equivalent arrangements, will
be apparent from or reasonably suggested by the present
invention and the foregoing descriptions thereof, without
departing from the substance or scope of the present inven-
tion. Accordingly, while the present invention has been
described herein in detail in relation to one or more preferred
embodiments, it is to be understood that this disclosure is only
illustrative and exemplary of the present invention and is
made merely for the purpose of providing a full and enabling
disclosure of the invention. The foregoing disclosure is not
intended to be construed to limit the present invention or
otherwise exclude any such other embodiments, adaptations,
variations, modifications or equivalent arrangements, the
present invention being limited only by the claims appended
hereto and the equivalents thereof.

What is claimed is:

1. A device comprising a non-transitory computer readable
medium storing instructions for generating a product defini-
tion for a software product and validating installations of that
software product using the generated product definition,

(a) wherein the device is configured to be physically
coupled to a computer via a hardware interface such that
the computer can execute the stored instructions for
generating a product definition for a software product
and validating installations of that software product
using the generated product definition;

(b) wherein the device and instructions are configured to
enable the device to be utilized in a method comprising
(1) physically coupling the device to a first computer

having a first installation of a first software product
installed thereon,
(1) executing, using a processor of the first computer,
instructions stored on the device which generate a first
product definition for the first installation of the first
software product installed on the first computer, such
generation including
(A) generating, for each file of the first installation on
the first computer which includes a version num-
ber, a hash value for that respective file,

(B) generating information about registry entries on
the first computer for the first software product,
(iii) physically coupling the device to a second computer
having a second installation of'the first software prod-
uct installed thereon, and
(iv) executing, using a processor of the second computer,
instructions stored on the device which attempt to
validate the second installation, such validation
including
(A) comparing the generated hash values for the first
installation to generated hash values for the second
installation, and

(B) comparing the generated information about reg-
istry entries on the first computer for the first soft-
ware product to registry entries on the second com-
puter for the first software product.

2. The device of claim 1, wherein generating, for each file
of'the first installation on the first computer which includes a
version number, a hash value for that respective file comprises
generating an MDS hash value.

3. The device of claim 1, wherein, with respect to execut-
ing, using a processor of the first computer, instructions
stored on the device which generate a first product definition

US 9,405,524 B1

9

for the first installation of the first software product installed
on the first computer, such generation comprises generating
information about a database object.

4. The device of claim 1, wherein, with respect to execut-
ing, using a processor of the first computer, instructions
stored on the device which generate a first product definition
for the first installation of the first software product installed
on the first computer, such generation comprises generating
information about a table.

5. The device of claim 1, wherein, with respect to execut-
ing, using a processor of the first computer, instructions
stored on the device which generate a first product definition
for the first installation of the first software product installed
on the first computer, such generation comprises utilizing
information about a last modified time of a file.

6. The device of claim 1, wherein, with respect to execut-
ing, using a processor of the first computer, instructions
stored on the device which generate a first product definition
for the first installation of the first software product installed
on the first computer, such generation comprises setting a flag
to indicate whether a file is optional.

7. A method comprising

(a) providing a device comprising a non-transitory com-
puter readable medium storing instructions for generat-
ing a product definition for a software product and vali-
dating installations of that software product using the
generated product definition, wherein the device is con-
figured to be physically coupled to a computer via a
hardware interface such that the computer can execute
the stored instructions for generating a product defini-
tion for a software product and validating installations of
that software product using the generated product defi-
nition;

(b) physically coupling the device to a first computer hav-
ing a first installation of a first software product installed
thereon;

(c) executing, using a processor of the first computer,
instructions stored on the device which generate a first
product definition for the first installation of the first
software product installed on the first computer, such
generation including
(1) generating, for each file of the first installation on the

first computer which includes a version number, a
hash value for that respective file,

10

20

25

30

35

40

10

(ii) generating information about registry entries on the
first computer for the first software product;
(d) physically coupling the device to a second computer
having a second installation of the first software product
installed thereon; and
(e) executing, using a processor of the second computer,
instructions stored on the device which attempt to vali-
date the second installation, such validation including
(1) comparing the generated hash values for the first
installation to generated hash values for the second
installation, and

(i1) comparing the generated information about registry
entries on the first computer for the first software
product to registry entries on the second computer for
the first software product.

8. The method of claim 7, wherein generating, for each file
of'the first installation on the first computer which includes a
version number, a hash value for that respective file comprises
generating an MDS hash value.

9. The method of claim 7, wherein, with respect to execut-
ing, using a processor of the first computer, instructions
stored on the device which generate a first product definition
for the first installation of the first software product installed
on the first computer, such generation comprises generating
information about a database object.

10. The method of claim 7, wherein, with respect to execut-
ing, using a processor of the first computer, instructions
stored on the device which generate a first product definition
for the first installation of the first software product installed
on the first computer, such generation comprises generating
information about a table.

11. The method of claim 7, wherein, with respect to execut-
ing, using a processor of the first computer, instructions
stored on the device which generate a first product definition
for the first installation of the first software product installed
on the first computer, such generation comprises utilizing
information about a last modified time of a file.

12. The method of claim 7, wherein, with respect to execut-
ing, using a processor of the first computer, instructions
stored on the device which generate a first product definition
for the first installation of the first software product installed
on the first computer, such generation comprises setting a flag
to indicate whether a file is optional.

#* #* #* #* #*

